PC-lint Plus Quick Start for Visual Studio

1

pun < | Downloads - o *
Home Share View (]
E v 4 & > ThisPC > Downloads v U | Search Downloads »
T — i pclp-windows-eval.zip

I Desktop

¥ Downloads

Locate the downloaded evaluation zip file.

= Documents
! This PC
& Network
1item -
b ~ | Downloads Extract - o X
Home Share View Compressed Folder Tools (2]
« v 4 ¥ > ThisPC > Downloads v U | Search Downloa o
Quick access i pclp-windows-eval.zip
I Desktop Open
| 3 - -
¥ Downloads Open in new window Extract the zip file.
= Documents
Extract All. k
8 This PC Pin to Start
I_Q Share
& Network
Open with...
Give access to P
litem 1item selected 29.6 MB Restore previous versions =

s PC > Downlaads

 Quick access o pelp-windows-eval

Move the license file downloaded from the email attachment to the directory containing the PC-lint Plus executables.

pelp-windows-evalzip

evaluation.ic
ucrie 120byes
B This PC s

The evaluation license is now ready for use. Follow the next steps to create a configuration for your compiler and project.

Configure PC-lint Plus for a Visual Studio project or solution:

The configuration utility requires Python and the regex and pyyaml Python modules to be installed which can be accomplished easily by following the directions provided in the subsections
“Installing python" and "Installing required modules" in section 2.3 of the Reference Manual.

Manage config —] X
fome Share View Application Tools (]
« v 4 pclp-windows-eval > windows > config v | search config »

Name Date modified
 Quick access

B Desktop compilers.yaml
imposter.c
¥ Downloads N ’
pelp_config py -
¥ Documens e Launch pc1pvscfg.exe from the config directory.
= Pictures ¥ vswhere.exe *
windows
% This PC
¥ Network
5 5
5 items 1item selected 28.5 KB -
Choose Microsoft Visual Studio Installation Path... X

C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional
C:\Program Files (x86)\Microsoft Visual Studio\2019\Professional
C:\Program Files (x86)\Microsoft Visual Studio 14.0\

Select the version of Visual Studio you are using from the list. Check the "64-bit build" box if appropriate. Double click the selected
Visual Studio version to continue, then follow the prompts.

[64-bit build

Command Prompt

(5] compiler.h

ier Int From a Command Prompt or Powershell window, run the batch file created by pcipvscfg.exe. The batch file will generate the compiler
compiler.in and project configuration files.

project.Int

Run PC-lint Plus with a compiler and project configuration:

Command Prompt

>pclp6d compiler.lnt project.lnt

Run PC-lint Plus from a command prompt, providing the compiler and project configuration files as arguments in that order. To integrate
PC-lint Plus into the Visual Studio IDE, proceed to Step 2.

Getting Started using PC-lint Plus with Visual Studio

Introduction

PC-lint Plus is a powerful static analysis tool that can find bugs and potential issues in C and C++ source code,
help detect violations of safety-related coding guidelines such as MISRA and AUTOSAR, and improve the quality
of a project by revealing dubious constructs, undefined behavior, and other issues that make the code unnecessarily
difficult to understand. Before you can start using PC-lint Plus on your project, it needs to be correctly configured.
The PC-lint Plus Reference Manual that is distributed with the product provides details about all features of
PC-lint Plus but this guide will help you to quickly configure PC-lint Plus and provide practial pointers for using
PC-lint Plus.

Please contact us at support@pclintplus.com with any questions or feedback regarding your evaluation
experience.

Prerequisites
Apply evaluation license file

Download the evaluation license file sent as an email attachment. Place the evaluation license file in the directory
containing the PC-lint Plus executables extracted from the zip file.

Ensure pclp_config dependencies are installed

pclp_config requires Python and the regex and pyyaml Python modules to be installed which can be accom-
plished by following the directions provided in the subsections “Installing python” and “Installing requird modules”
in section 2.3 of the Reference Manual.

Step 1 - Create a compiler configuration

While C and C++ are standardized languages, every compiler provides its own predefined macros, non-standard
keywords, compiler-specific behavior, etc. that PC-lint Plus needs to know about in order to correctly analyze your
source code. PC-lint Plus also needs to know the sizes of types like int and £float and where your compiler looks
for system headers. The included pclp_config tool will automatically extract the necessary information from
your compiler.

Use pclp_config to generate a compiler configuration

Note: Compiler and project configuration files can be generated automatically for a Visual Studio project or solution
using the pclpvscfg.exe GUI utility distributed with PC-lint Plus. See the first page of this guide for a quick start
using this utility. The following section describes how to use the command line utility pclp_config.py to create a
Visual Studio compiler configuration. The Reference Manual also describes this process in the subsection “Creating
a compiler configuration for Microsoft C/C++ compilers” of section 2.3 “Configuring with pclp_config”.

First, you need to identify the full path of your compiler. Open a “Developer Command Prompt” (not a Powershell)
for the version of Visual Studio you want to create a configuration for. You can find installed Developer Command
Prompts by pressing the Windows key to open the Start menu or Start screen and typing "dev" in the search field.
Select the appropriate Developer Command Prompt to launch.

From the Developer Command Prompt, run:
where CL

This command will print the path to the Visual Studio compiler, c1.exe. If you do not see a path and the message
INFO: Could not find files for the given pattern(s). appears then please ensure the command was
executed from a Developer Command Prompt, not a regular Command Prompt.

B Developer Command Prompt for VS 2017
** Visual Studio 2017 Developer Command Prompt v15.9.18

** Copyright (c) 2017 Microsoft Corporation

All Apps Documents Settings Web

Best match

- Developer Command Prompt for
VS 2017 k C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional>where CL_
App

You can now use pclp_config.py to generate a compiler configuration. This can be performed from a regular
Command Prompt in a convenient working directory to collect output files. Substitute and run the following
command to generate compiler configuration files:

python pclp_config.py
--compiler=vs2019
--compiler-bin=C:\path\to\cl.exe
--config-output-lnt-file=co-vs2019.1nt
--config-output-header-file=co-vs2019.h
--generate-compiler-config

e Replace the vs2019 argument to the --compiler option with the appropriate Visual Studio version (vs2017,
vs2015, etc.). Note that vs2019 refers to the 32-bit compiler. Use vs2019_64 (or vs2017_64, etc.) for
64-bit projects. The filenames in the two --config-output options should be updated to match the
compiler.

e Replace the C:\path\to\cl.exe argument to --compiler-bin with the full compiler path produced by
the where CL command in the previous step.

e This command is presented on multiple lines for readability but must be entered at the Command Prompt
on a single line.

e Additional compiler options can be provided using the --compiler-options option. For example, if you
build your Visual Studio project using the CL.exe option /std:c++17 then this should be provided to
pclp_config.py by adding the option --compiler-options="/std:c++17".

Test the compiler configuration

The compiler configuration generated by pclp_config will consist of a .1nt file and a .h file with the names you
provide (the name should typically correspond to the compiler, e.g. co-gcc.1nt and co-gcc.h for GCC). These
files should be kept together (in the same directory). PC-lint Plus can now be used to analyze source modules like
so:

pclp co.lnt source-files

where pclp refers to the PC-lint Plus executable (pclp64.exe for Windows, pclp64_linux for Linux, and
pclp64_macos for mac OS), co.1lnt should be replaced with the .1nt file generated above, and source-files
is a list of one or more C and/or C++ source files to analyze.

If co.1lnt or your source files are not in the directory from which PC-lint Plus is executed, you need to use the -i
option to specify the directories that should be searched for these files, e.g. -iC:/pclp/1nt/.

You should confirm that PC-lint Plus is able to successfully parse a non-trivial source file with the generated
compiler configuration. This can be done using:

pclp co.lnt -wl +e900 source-files
Use a valid C or C++ source file that does not contain syntax errors.

The -w1 option will suppress all messages except errors which indicate a configuration problem and the +e900
option will enable message 900 which is emitted when PC-lint Plus successfully finishes processing the provided
source file(s). The result should look something like this:

PC-lint Plus 2.0, Copyright Vector Informatik GmbH 1985-2022

--- Module: a.c (C)
--- Module Wrap-up
--- Global Wrap-up

--- Module: a.c (C)
note 900: execution completed producing O primary and O supplemental messages
(0 total) after processing 1 module

If you receive error messages here, that is indicative of an incomplete configuration file (see Troubleshooting FAQ
below).

Step 2 - Integrate with your IDE (optional)

PC-lint Plus is a command line application which allows it to be integrated easily with other tools including your
build process, continuous integrations, and many IDEs. If you execute your build process within an IDE, you will
probably want to be able to run PC-lint Plus from within your IDE.

PC-lint Plus can be integrated into Visual Studio as an External Tool available in the Tools menu. Output from
PC-lint Plus can be displayed in the Output window with support for double-click navigation to the relevant source
code line.

Open the “Tools” menu and select “External Tools...".
Press the “Add” button on the right.
In the “Title” field, name the command “Analyze Current File with PC-lint Plus”
Press the “..." button to the right of the “"Command” field and locate the PC-lint Plus executable you want
to use. We recommend that you use pclp64.exe unless you have a specific reason to select a 32-bit or
debug executable.
5. In the Arguments field, enter the following (including quotes and dashes) with spaces separating each line:
o -"format=7%(%F(%1):%) error ’n: (%t -- %m)"
e -hF2 -width(0) -t4 +e900
e -iC:\directory\of\configuration where C:\directory\of\configuration is the directory
where you saved the compiler configuration produced in the previous step or by the pclpvscig.exe
GUI
e The name of the compiler configuration file you generated that exists in the directory specified in the
previous item, e.g. co-vs2019.1nt
o $(ItemPath)
6. Select the “Use Output window" checkbox.

e\

7. Press OK
Tools | Extensions Window Help Search (Ctrl+Q)

Get Tools and Features...]

External Tools ? X a
1 '@ Connect to Database... I
Menu contents: T2 Connect to Server...
Create &GUID
Add .
Generate de Bruijn Table 1 cCode Snippets Manager... Ctrl+K, Ctrl+B
Error Loo&kup [1
Spy8u++ =33 Choose Toolbox Items...
ILDasm
Visual Studio &Command Prompt Create GUID
Move Up oo B T
enerate de Bruijn Table
ove Do Error Lookup

Title: Analyze Current File with PC-lint Plus| Spy++

ILDasm
Command: C:pclp\pclp6d.exe

Visual Studio Command Prompt
Arguments:) -iCA\pclp\config co_vs2019 x64.Int §(itemPath) |) Analyze Current File with PC-lint Plus k
Initial directory: N External Tools...
- »
[use Output window [C] Prompt for arguments Command Line
= I rt and Export Setti
[Jreat output as Unicode Close on exit mport and Export Settings

Customize...

O 1\ GGz Apply £+ Options...

Test the new External Tool entry by selecting “Tools”, “Analyze Current File with PC-lint Plus” while a C or C4++
source file (.c or .cpp) is open. Headers included by the analyzed source file will be analyzed as well. There is

generally no need to directly pass a .h file as a module argument to PC-lint Plus.

Step 3 - Generate a project configuration

The compiler configuration tells PC-lint Plus how to process source code written for a particular compiler. A
project configuration tells PC-lint Plus how to analyze a given project and typically consists of:

e The list of source files to analyze as part of the project

e Project-specific macros defined in your project’s build process
e Locations for project-specific headers

e Message suppressions used in the project

A configuration file is a plain text file with a .1nt extension that consists of PC-lint Plus options. While these
same options can be provided on the command line, it is usually easier to maintain your configuration when these
options are all contained in a single file. This file can then be referenced on the command line to invoke the
options contained within it.

The simplest project configuration contains just the names of the source modules to analyze. If you have project-
specific macros (macros defined in your compiler invocation when building the project), these should be included in
this file as well. Macros can be defined using the -d, +d, or ++d options, e.g. -dF00 defines the macro FOO without
a value, -dBAR=1 defines the macro BAR and causes it to expand to 1, and -dfoo(x)=x defines a function-like
macro. See detailed documentation for these options in section 4.4.2 of the Reference Manual.

As you use PC-lint Plus, you may want to enable messages that are not enabled by default or suppress some
messages. Messages can be disabled globally using -e# (e.g. -e888 will suppress message 888) and enabled
globally using +e# (e.g. +e888 to enable message 888). PC-lint Plus provides options to enable or suppress
messages within specified functions, files, or macro expansions and enable or suppress messages that reference
specific symbols, types, or strings. Additionally, using source code comments, messages can be suppressed on
particular lines and within specified expressions, statements, and braced regions. See section 4.3.1 (Error Inhibition)
for descriptions of all the suppression mechanisms that PC-lint Plus provides.

Note: Using the pclpvscfg.exe GUI utility distributed with PC-lint Plus, a compiler and project configuration
can be generated automatically for a Visual Studio project or solution. See the first page of this guide for a quick
start using this utility.

1. Follow the instructions from Step 1 to open a Developer Command Prompt and locate the c1.exe binary.

2. From the config directory included with PC-lint Plus, execute cl.exe imposter.c to compile the
imposter utility.

3. Locate the Visual Studio project or solution file for your project. Solution files have a .sln extension.

4. In the Developer Command Prompt, set the IMPOSTER_LOG environment variable to the full path where
compiler invocations should be logged:

set IMPOSTER_LOG=/path/to/imposter-log
The file name is not important. If the file already exists, it should be truncated before continuing as
imposter.exe appends entries to this file without truncating it.

5. Run msbuild on your project file using imposter.exe as the compiler by executing the following commands
in the same Developer Command Prompt:

msbuild project.sln /t:clean

msbuild project.sln /p:CLToolExe=imposter.exe /p:CLToolPath=C:\path\to\imposter

Note that the name without a path is provided to the /p:CLToolExe option and the path, without the file
name, is provided to the /p:CLToolPath option.

Note: If your project fails to properly build using imposter.exe as the compiler you may need to have
imposter.exe run the compiler during the build process. This can be accomplished by running the following
command and then running the two above commands in the same Developer Command Prompt:

set IMPOSTER_COMPILER=/path/to/cl.exe

6. Run pclp_config.py to process the output of the imposter log and generate a project configuration:

python pclp_config.py
--compiler=vs2015
--imposter-file=/path/to/imposter-log
--config-output-lnt-file=project.lnt
--generate-project-config

Replacing vs2015 with the appropriate compiler name, /path/to/imposter-log with the same value that
IMPOSTER_LOG was set to above and project.lnt with the desired value.

Step 4 - Analyze your project

Once you have a project configuration containing at least the names of your source files, you can simply run
PC-lint Plus as:

pclp co.lnt project.lnt
where co. lnt is your compiler configuration and project. int is your project configuration.

Again, there should be no error messages (those introduced with error; warnings and infos are expected). If
you encounter error messages at this point, there is likely a configuration issue that needs to be addressed before
continuing.

Next Steps

e Further Reading
The Reference Manual found in the doc/ directory of the PC-lint Plus distribution documents all aspects
of PC-lint Plus including many features that are not described here. Of particular importance when first
becoming aquanted with PC-lint Plus are:

— Chapters 1 and 3 of the Reference Manual comprise fewer than 5 pages but provide useful insight into
the workings of PC-lint Plus.

— Chapter 2 describes how to configure PC-lint Plus for other compilers and IDEs not mentioned above.

— Chapter 4 documents the many options supported by PC-lint Plus. All configuration of PC-lint Plus
takes place through the use of options, whether appearing on the command line, a .1nt file, or a
source code annotation.

e MISRA, AUTOSAR, and CERT C guideline checking
PC-lint Plus can check your source code for violations of supported MISRA, AUTOSAR, and CERT C
coding guidelines. These checks can be enabled by simply referencing the appropriate configuration files
supplied in the 1nt/ directory of the PC-lint Plus distribution (e.g. au-misra3.1lnt for MISRA C 2012,
au-autosar.lnt for AUTOSAR, etc.). A few quick pointers about these files:

— Make sure to reference the configuration file(s) before your source files or they won't take effect until
after your modules are processed.

— Each of these configuration files enables the language mode associated with that standard; if you are
using a newer C or C++ version than the corresponding guidelines were written for, you will need to add
your own -std option after referencing the file. For example, MISRA C++ requires the use of C++03
so the au-misra-cpp.1nt file contains the option -std=c++03 which will result in unwarranted syntax

errors if you are using a newer language version. In that case you will need to provide the option
-std=c++11, -std=c++14, -std=c++17, or -std=c++20 after referencing the MISRA configuration
file.

— The configuration files enable all supported checks for both library code (e.g. system headers) and
non-library code. To disable such checking within library code, add the options -wlib(4) -wlib(1)
immediately after referencing the corresponding configuration file(s).

— The PC-lint Plus Reference Manual contains a chapter corresponding to each guideline family: “MISRA
Standards Checking”, "AUTOSAR Standard Checking’, and "CERT C Standard Checking”. Each of
these chapters provides additional useful information about how PC-lint Plus supports the corresponding
standard and includes tables that detail the level of support for each guideline.

¢ Introducing PC-lint Plus to an established project

When analyzing a project with PC-lint Plus for the first time, the volume of feedback can often be daunting.
PC-lint Plus categorizes all diagnostics as errors, warnings, infos, and notes. The default warning level of 3
results in errors, warnings, and infos being enabled. If the output produced by PC-lint Plus is overwhelming,
it can be helpful to start by changing the warning level to two using the option -w2 which will limit output
to errors and warnings. Each diagnostic also has its own message number which can be used to suppress
the message globally using -e# (where # is the message number) if you are not interested in a particular
diagnostic or do not feel its issuance is useful. Such an approach should make it easier to process the output
of PC-lint Plus by reporting only the most egregious issues detected.

Troubleshooting FAQ

e How can | skip processing of headers?
PC-lint Plus needs to correctly process all included headers in order to understand and properly analyze your
source code. If the desire is to suppress violations of coding guidelines in library headers, use the options
-wlib(4) -wlib(1) to suppress all messages except errors which indicate a configuration problem in library
code as explained above. If errors are being reported from header files, see the next two items to resolve this
issue.

e PC-lint Plus cannot find my header
PC-lint Plus has no innate knowledge about the location of headers; this information must be provided
explicitly using -i options. A compiler configuration generated with pclp_config will contain -i options
that correspond to system include directories extracted from the compiler but any other include directories
used by the analyzed project will need to be specified manually in your project configuration. If PC-lint
Plus issues error 322 (unable to open include file), use the -i option to specify the directory containing
the header. For example, if the include directive is #include "dir3/test.h" and the full path of this
file is C:/dir1/dir2/dir3/test.h, the appropriate -i option would be -iC:/dir1/dir2 (as this is the
directory that contains dir3/test.h).

e Syntax errors from headers
Syntax errors often represent a configuration issue and generally should not be suppressed as doing so only
hides issues and compromises analysis. Errors emitted within headers are often related to missing macro
definitions that cause an undesired conditional inclusion path to be followed while processing the header.
A review of the code surrounding the location provided in the error message emitted by PC-lint Plus will
generally reveal the macros involved which can then be defined appropriately with the -d option.

e PC-lint Plus produces too many messages
When PC-lint Plus is initially introduced to a mature project, the volume of messages emitted with default
settings can be overwhelming. See “Introducing PC-lint Plus to an established project” above for some tips
on managing the results of PC-lint Plus in such situations.

e How can | tell PC-lint Plus to write analysis output to a file?
The output of PC-lint Plus can be directed to a file using the -os(filename) option. Since options in
PC-lint Plus are processed in the order in which they appear, make sure that this option appears early in
your invocation to ensure the desired output is redirected.

e Does PC-lint Plus provide output summaries or reports?
The -summary option will generate a summary of all messages that were issued by PC-lint Plus. PC-lint Plus
does not produce any general reports but rather provides a flexible diagnostic format that can be used by a
post-processing tool to generate custom reports. See section 4.3.3 of the Reference Manual for information
on message formatting options.

e How can | configure PC-lint Plus to produce HTML/XML output?
PC-lint Plus provides several format options that can be used to produce robust HTML or XML output. See
the env-html.1nt and env-xml.1nt configuration files for examples of how to produce HTML and XML
output, respectively. These configuration files can be used as is by referencing them in your PC-lint Plus
invocation or can be modified to meet your specific needs.

e How can | make PC-lint Plus run faster?
There are a variety of factors that influence the performance of PC-lint Plus including the size of the project
being analyzed, the options being used, the available hardware of the host machine, and other processes
running on the machine. The following factors may artificially degrade the performance of PC-lint Plus:

— Accessing data over a network. The PC-lint Plus executable, any configuration files, and source files
(including headers) being analyzed should be locally available on the machine executing PC-lint Plus.
If files are accessed over a network (e.g. a network drive), this will introduce a bottleneck that may
significantly impact performance.

— Virus scanners. Inappropriately configured virus scanners may result in substantial slow downs during
analysis.

— Insufficient memory. The memory used by PC-lint Plus will vary considerably depending on the project
and use case. If physical memory is being exhausted during analysis, this can degrade performance due
to thrashing.

— Running in a virtualized or emulated environment. Virtualized environments generally have access to
only a subset of the host machine's resources and emulation layers may incur performance penalties,
both of which may limit the performance of PC-lint Plus.

The performance of PC-lint Plus may be improved by:

— Using parallel analysis. By default, PC-lint Plus will use a single thread to perform analysis. If the
host machine has multiple processors or cores, PC-lint Plus can analyze multiple modules in parallel
by performing analysis across multiple threads, typically providing a significant reduction in runtime.
This needs to be explicitly enabled by using the -max_thread=n option. For example, to perform
analysis with 4 threads, use -max_threads=4. See section 16.9 “Parallel Analysis” in the PC-lint Plus
Reference Manual for details.

— Using precompiled headers. PC-lint Plus supports the use of precompiled headers which can often
appreciably improve performance of C++ projects. See Chapter 6 (Precompiled Headers) in the PC-lint
Plus Reference Manual for more information.

